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ABSTRACT

The science, production methods, and format of long-range forecasts (LRFs) at the Climate Prediction
Center (CPC), a part of the National Weather Service’s (NWS’s) National Centers for Environmental
Prediction (NCEP), have evolved greatly since the inception of 1-month mean forecasts in 1946 and
3-month mean forecasts in 1982. Early forecasts used a subjective blending of persistence and linear
regression-based forecast tools, and a categorical map format. The current forecast system uses an increas-
ingly objective technique to combine a variety of statistical and dynamical models, which incorporate the
impacts of El Niño–Southern Oscillation (ENSO) and other sources of interannual variability, and trend.
CPC’s operational LRFs are produced each midmonth with a “lead” (i.e., amount of time between the
release of a forecast and the start of the valid period) of 1⁄2 month for the 1-month outlook, and with leads
ranging from 1⁄2 month through 121⁄2 months for the 3-month outlook. The 1-month outlook is also updated
at the end of each month with a lead of zero. Graphical renderings of the forecasts made available to users
range from a simple display of the probability of the most likely tercile to a detailed portrayal of the entire
probability distribution.

Efforts are under way at CPC to objectively weight, bias correct, and combine the information from many
different LRF prediction tools into a single tool, called the consolidation (CON). CON 1⁄2-month lead
3-month temperature (precipitation) hindcasts over 1995–2005 were 18% (195%) better, as measured by the
Heidke skill score for nonequal chances forecasts, than real-time official (OFF) forecasts during that period.
CON was implemented into LRF operations in 2006, and promises to transfer these improvements to the
official LRF.

Improvements in the science and production methods of LRFs are increasingly being driven by users, who
are finding an increasing number of applications, and demanding improved access to forecast information.
From the forecast-producer side, hope for improvement in this area lies in greater dialogue with users, and
development of products emphasizing user access, input, and feedback, including direct access to 5 km �
5 km gridded outlook data through NWS’s new National Digital Forecast Database (NDFD).

1. Introduction

This paper describes the rationale, latest methods,
and skill of the National Oceanic and Atmospheric Ad-
ministration’s (NOAA) operational 1- and 3-month
outlooks, produced at the Climate Prediction Center
(CPC) in Camp Springs, Maryland. Operational out-
looks of 1-month-mean U.S. temperature, and total
precipitation, were first issued, in a categorical format,
at zero lead, in 1946 by the U.S. Weather Bureau. Cat-
egorical 3-month-mean outlooks for four adjacent sea-

sons began in 1973. Probabilistic, zero-lead outlooks for
3-month-average temperature and total precipitation
began in July 1982. Probabilistic 1-month outlooks, at a
lead of 1⁄2 month, and 3-month outlooks, at leads of 1⁄2
month to 121⁄2 months in increments of 1 month, were
first issued in mid-December 1994 (Van den Dool 1994;
O’Lenic 1994; Barnston et al. 1994). For many years the
community has referred to these products as long-range
forecasts (LRFs), and this terminology will be used
throughout this paper. Also, the term “outlook” is used
in reference to the final 1- or 3-month outlook, while
“forecast” is used when describing tools used to pro-
duce an outlook, or forecasting in general.

While the instantaneous details of the weather are
unpredictable beyond a limit of about 2 weeks, statistics
such as weekly and longer means, and standard devia-
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tions, are predictable to some degree (Lorenz 1982).
Evaluations of the skill of operational LRFs by Namias
(1953) and subsequently Barnston (1994a,b), Barnston
et al. (1994, 1999), and Livezey et al. (1995) support this
assertion. Blackmon (1976) and Blackmon et al. (1977)
have shown that the low-frequency variability of North-
ern Hemisphere upper-air height shows a tendency for
the standard deviation to have minima over land areas
and maxima over the oceans downstream of the storm
tracks, while the low-frequency variability of near-
surface temperature is largest over the continents and
at high latitudes. Low-frequency variability of upper-air
height was subsequently shown to be associated with
stationary teleconnection patterns, which are main-
tained by energy from the basic state derived from
barotropic instability (Simmons et al. 1983; Blackmon
et al. 1984a,b). Ocean–atmosphere (Rasmusson and
Carpenter 1982) and land–atmosphere interactions
(Huang and Van den Dool 1996; Van den Dool 2007;
Van den Dool et al. 2003) were also found to produce
predictable anomaly patterns. Phenomena that fall into
this category include ENSO, trends, and long-lived tele-
connection patterns (Wallace and Gutzler 1981; Barn-
ston and Livezey 1987, Horel and Wallace 1981;
Livezey and Smith 1999, Mo and Livezey 1986; Higgins
et al. 2000a,b; Higgins et al. 2002; Van den Dool 2007).
CPC’s forecast tools and methods have been developed
based upon state-of-the-art knowledge of these phe-
nomena and interactions.

Section 2 describes the forecast tools used in opera-
tional seasonal-to-interannual (SI) forecasting at CPC.
Section 3 discusses the forecast format and interpreta-
tion. Section 4 discusses operational procedures. Sec-
tion 5 describes the skill of operational LRFs. Section 6
gives conclusions.

2. Overview of forecast methods and tools

Table 1 illustrates the evolution of CPC’s LRF op-
erations. Strictly subjective modification and consolida-
tion of forecast tools were practiced during 1946–81.
The forecast tools used during that era were based
upon the persistence of current anomalies into the fore-
cast period, linear regression, and the skill advantage
that can be gained by applying a forecast for the first
week from a zero-lead forecast as the forecast for the
entire forecast period (Namias 1953; Gilman 1985).
This situation began to change during the 1980s, when
an appreciation of the dominant influence of El Niño–
Southern Oscillation (ENSO) began to emerge (Ras-
musson and Carpenter 1982).

ENSO composites, which are averages of observed
temperature and precipitation maps stratified by ENSO
phase, and expressed as anomalies (Higgins et al.
2000a), were implemented in the 1990s. An understand-
ing was also developed over that decade that trends and
other long-time-scale signals have a significant impact
on 3-month means. This motivated the development of
new statistical forecast tools, such as canonical correla-
tion analysis (CCA; Barnston 1994b) and optimal cli-
mate normals (OCN; Huang et al. 1996; Van den Dool
2007), which were found to be skillful at leads out to as
long as a year. This long-lead skill from statistical tools
and ENSO afforded an increase in the lead time of the
forecasts, which was incorporated into CPC’s 3-month
outlook operations with the outlook prepared in mid-
December 1994. Until January 1995, the lead (the
amount of time between the release of a forecast and
the start of its valid period) was zero. Beginning with
the 3-month outlook valid January–March 1995, the
lead time of 3-month outlooks was increased to a mini-

TABLE 1. Evolution of operational LRFs.

Years Variables (predictands) Tools Formulation, lead

1946–81 Surface temperature (T ); precipitation
(P); categorical: above (A), below
(B), and normal (N)

Linear regression (with 700-hPa
height as predictor), persistence of
anomalies

Subjective, zero lead

1982–94 T, P, tropical Pacific SST, A, B, N,
and probabilities (%)

Linear regression (with 700-hPa
height as predictor), trend,
analog–antianalog, ENSO

Mostly subjective, zero lead

1995–2004 T, P, SST, A, B, N, %, terciles, and
POE

SMLR (with SST, 500-hPa height,
surface T, P, most recent soil
moisture, and trend as predictors),
OCN, CCA (with SST, 700-hPa
height, T, and P as predictors),
ENSO, two-tier coupled model,
skill mask (1995), SST, CON

Equal parts subjective/objective,
1⁄2–121⁄2-month lead

2004–06 T, P, SST, A, B, N, %, terciles, and
POE

SMLR, trend, CCA, ENSO, one-tier
coupled model (CFS, in 2004), skill
mask, T, P, CON

Mostly objective, 1⁄2–121⁄2-month
lead
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mum of 2 weeks and a maximum of 121⁄2 months. In-
stead of just one temperature and one precipitation
map, each outlook would now consist of a set of 13
outlooks, with 26 maps, for leads of 1⁄2 to 121⁄2 months,
with each lead overlapping the next by 2 months.

The addition of skill masks (Barnston 1994a; Van
den Dool 2007) and an objective consolidation of SST
forecasts in the mid-1990s (Unger et al. 2008, manu-
script submitted to Mon. Wea. Rev., hereafter UVOC)
further reduced the amount of subjective input re-
quired to prepare the 1- and 3-month outlooks. A
method to objectively combine, or “consolidate,” four
forecast tools for surface temperature and precipitation
was implemented in late 2006. This technique resulted
in a substantial increase in the skill of hindcasts, in
comparison with official outlooks made operationally
over the same 10-yr period (1995–2005).

We now briefly describe the forecast tools.
The climate forecast system (CFS, implemented 2004;

see Table 1) is a “one tier”, fully coupled, dynamical
model of the global oceans and atmosphere. An en-
semble of 10 forecasts is run twice each day out to 9
months. The output data from the model are freely and
publicly available online via ftp (Saha et al. 2006). In
one-tier models, the future evolution of ocean–land–
atmosphere interactions is predicted by integrating a
fully coupled atmosphere–ocean–land model from re-
alistic initial conditions. There are no flux adjustments
between the ocean and atmosphere components of the
CFS (Saha et al. 2006). Some dynamical modeling sys-
tems use an older, “two tier” scheme in which a coupled
ocean–atmosphere model is run in order to acquire a
forecast of SSTs (first tier). A second integration is then
run, using the SST forecast as the lower ocean bound-
ary for an atmospheric GCM (Ji et al. 1994) (second
tier). The primary assumption of two-tier models is that
the atmosphere–ocean interaction serves as the major
source of skill in the LRFs, and that the evolution of
low-frequency ocean–atmosphere interactions is domi-
nated by the ocean, as represented by the SST.

The optimal climate normals (OCN, implemented
1995; Table 1) approach uses the arithmetic difference
between the 10- (15-) yr mean of the most recently
observed seasonal mean temperature (seasonal total
precipitation) for a given season and the 30-yr clima-
tology (currently 1971–2000) for that season (the trend)
as the forecast for the next realization of that season.
The current World Meteorological Organization
(WMO) convention is for the climatology to be com-
puted over three adjacent calendar decades, and to up-
date the climatology every 10 yr, near the beginning of
a decade. In a changing climate, this means that the
trends indicated by tools such as the OCN grow larger

as the climatology ages (Van den Dool 1994; Huang et
al. 1996).

The canonical correlation analysis (CCA, imple-
mented 1994; Table 1) uses linear statistical techniques
to find optimum relationships among multivariate sets
of independent and dependent variables. CPC’s CCA
uses 700-hPa height, nearly global SST, and time-lagged
U.S. surface temperature or precipitation as predictors
at multiple locations, and U.S. surface temperature or
precipitation at multiple locations as predictands
(Barnston 1994b).

Screening multiple linear regression (SMLR, imple-
mented 1997; Table 1) is used to extract information
from two or more variables to produce a forecast of the
seasonal and monthly mean temperature and total pre-
cipitation. CPC’s SMLR predictor variables include
Northern Hemisphere 700-hPa height, nearly global
SST, U.S. surface temperature (T) or precipitation (P),
and soil moisture estimates. SMLR is applied to 102
conterminous U.S. climate divisions (Guttman and
Quayle 1996), rather than multistation anomaly pat-
terns, as is done in CCA (Unger 1997).

The consolidation (CON, implemented 2006; Table
1) is used to create a single forecast tool that exploits
the tendency for the information available in the four
main forecast tools (CFS, CCA, OCN, and SMLR) to
be, in part, complementary. This quality gives it higher
average skill than any of the individual forecast tools
(UVOC). It does this by estimating the bias and skill of
each tool from available hindcast data and forming a
single probabilistic forecast from a weighted combina-
tion of the debiased tool forecasts. The weights are
proportional to the skill of the tool and represent the
independent information contributed by each tool. The
hindcasts must come from the operational version of
the given tool and, hence, need to be regenerated each
time the formulation of a tool is changed. The tech-
nique uses an adaptive regression technique, similar to
a simplified Kalman filter (Kalman 1960). Also, the
consolidation bases its relationships much more heavily
on the most-recent 10–15 yr, and is quicker to adapt to
trends and other changes in the climate system than,
say, CCA and SMLR, whose training datasets cover
longer periods (UVOC). A documented tendency for
the consolidation to overemphasize the trend is ac-
counted for in CPC operations by detrending the CFS,
CCA, and SMLR forecasts prior to consolidation, and
then adding in a damped version of the OCN forecast
afterward (Huang and Van den Dool 1996).

The CON tool has several advantages. These include
1) replacing the subjective process formerly used to
combine forecast tool information with an objective,
reproducible method; 2) providing a seasonal forecast
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“first guess” with higher average skill than either the
individual guidance tools used to create the CON or the
official forecasts subjectively formulated from the tools;
and 3) providing a methodology that can be used to
incorporate additional forecast tools in the future. The
considerable enhancement in the skill of forecasts that
use consolidation will be discussed in section 5.

The “skill mask” was introduced into CPC’s LRF
operations in 1995 (Table 1) (Barnston 1994a; Van den
Dool 1994). The idea is to display forecast information
for a given tool to the forecaster working on the opera-
tional outlook only if it has skill, as determined by cross
validation, or reforecasting, over at least 25 yr, exceed-
ing some “useful” skill threshold. The skill mask was
intended to limit the amount of pure speculation and
possible misuse of nonskillful information that could be
subjectively incorporated into the official forecast. The
skill measure used for the skill masks for the four pri-
mary forecast tools (SMLR, CCA, OCN, and CFS) is
the anomaly correlation, (AC; Wilks 1995; see the ap-
pendix). The minimal skill threshold is chosen as AC �
0.3. (Forecast information displayed at locations on the
maps of the forecast tools seen by the forecasters where
the AC did not exceed 0.3 over an average of many
hindcasts is limited to only the sign of the anomaly.)
Colors indicate the category, red for above, blue for
below, and green for the middle tercile. (Figs. 7a-d, 8a-d
show detailed examples of skill-masked forecast maps.)

3. Forecast format and interpretation

The probabilistic format of CPC’s 1- and 3-month
outlook maps is necessary to represent the chaotic na-
ture of the climate system, whose monthly and seasonal
behavior and patterns are intrinsically not determinis-
tic. CPC’s public LRF maps (Fig. 1) use three tercile
categories, which are labeled below (B), normal (N) or
median, and above (A), and whose chance likelihood is
331⁄3% each, estimated using 30 yr of observed data
(currently for 1971–2000). For any given location and
season, a normal distribution is fitted to the corre-
sponding 30 temperature observations in the climatol-
ogy period. Precipitation data are transformed to be
symmetric about the median, making the transformed
distribution approximately normally distributed. The
values that divide these distributions into thirds are the
two values of the variables corresponding to their (�)
and (�) 0.43 standard deviations. The categories on the
map correspond to the three subdivisions of the ob-
served distributions of temperature and precipitation
that result from this statistical treatment. Under ideal
conditions for temperature for example, at any given
location, and for any chosen time of year, the coldest 10

yr define the lower third (the below category), the
middle 10 yr define the middle third (normal for T and
median for P), and the warmest 10 yr define the upper
third of the observed distribution (the above category).

CPC operational 1- and 3-month outlooks are simul-
taneously available in three formats, which provide
three levels of information. The first format is the tra-
ditional three-class probability map (Fig. 1). The sec-
ond format shows the amount by which the middle of
the distribution shifts as a result of the outlook (Fig. 2).
The third format gives the details of the observed
and outlook distributions for any of up to 102 climate
divisions over the conterminous United States, and
is called the probability of exceedance (POE) graph
(Fig. 3).

The first format allows three categories, which span
all possible values of temperature or precipitation, to
be displayed on a single map, as in Fig. 1. To facilitate
understanding and for simplicity, we have devised rules
that apply to the contours on CPC probabilistic 1- and
3-month outlook maps. At any point on the outlook
map (Fig. 1) the likelihood of the three categories sums
to 100%. There are 19 sets of unique possible tercile
probability combinations for the map contour patterns
shown in Table 2. These include a set for even odds (1⁄3,
1⁄3, 1⁄3), six sets for each extreme category (12 in all), and
six sets for when the middle category is the most likely.
In each case, with the exception of EC, the category
and probability plotted on the map (Fig. 1) are those
associated with the highest numerical values of the
probabilities for the three categories specified by the
forecast. This means, in Fig. 1a for example, that along
the 50 contour in the Midwest the likelihood of above
normal is 50%, while the likelihood of below drops to
162⁄3%, and the odds of the middle category remain at
331⁄3%. When the odds of above or below reach 631⁄3%
or higher, the odds of the opposite category reach a
minimum allowed value of 31⁄3%, while the odds of the
middle category are allowed to drop below 331⁄3%. In
the case where the middle category is favored, the odds
of the extreme categories each decline by amounts
equal to 1⁄2 of the amount by which the middle category
exceeds 331⁄3. The possible sets of tercile map contour
probabilities for this situation are (30, 40, 30), (25, 50,
25), (20, 60, 20), (15, 70, 15), (10, 80, 10), and (5, 90, 5)
(Table 2). The last four of these sets are rarely, if ever,
used. The EC category is used in 1- and 3-month out-
looks, and refers to the case where the odds of all three
categories (B, N, and A) are equal, at 331⁄3% each.

The probabilities plotted on the maps (Fig. 1) indi-
cate the likelihood of the most likely category among
the three. However, the deviation in the likelihood of
the three categories from climatology can be translated
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into changes in the mean and standard deviation of the
original distribution. Because both observed 3-month
seasonal mean temperatures and their outlooks are ap-
proximately normally distributed, the mean is the most
likely single value (this is also done for precipitation,
using a transformed version of the distribution, which is
symmetric about the median). Thus, the second format
is a map (Fig. 2) showing the shift, in degrees for tem-
perature, and in inches for precipitation, in this mid-
value of the distribution. This shift is precisely related
to the probabilities associated with the forecast (Fig. 1)
through probability theory. The shaded solid contours
of this parameter indicate the amount of this shift, given
as an anomaly from the 1971–2000 climatology, which is
shown in dashed contours (Fig. 2).

Expressing the distribution of temperature or pre-
cipitation for a given location or climate division as an
integral of the probability density starting at the right-
most side of the distribution, and plotting the result in
terms of value of the variable versus cumulative prob-
ability, gives the probability that the value on the ab-
scissa will be exceeded or, simply, the “probability of
exceedance” (POE) curve, also called a survival curve.
One such graph, for a climate division in northern Min-
nesota, is shown for the December–February (DJF)
2005 temperature outlook in Fig. 3. The values of the
probability on the outlook maps (Fig. 1) can be read
directly from the graph for the variable of interest for
each of 102 climate divisions over the conterminous
United States. Together, these three renderings (Figs.
1– 3) give a wide range of interpretations, and quality of
information, for the forecast, suitable for a wide range
of user applications.

Users of CPC outlook products span a wide range of
backgrounds, expertise, and requirements. They have
expressed a desire for improved or augmented LRF
products that are, among other things, 1) in the form of
raw, gridded forecast data; 2) more understandable; 3)
more highly resolved in time and space; and 4) avail-
able for additional variables (National Research Coun-
cil 2001, 2003). Resolving these user requirements will
necessarily require a dialogue between the producers
and users of the products, and the applications commu-
nity that works to adapt raw forecast products to the
needs of a growing user community.

4. Operational LRF procedures

On the third Thursday of each calendar month, at
0830 eastern time, CPC releases its latest 1- and
3-month outlooks. The outlook process begins 6 days
earlier, when CPC hosts a Friday telephone–Internet-
based conference to discuss the latest forecast tools

FIG. 1. Long-range (3 month) outlooks of the probability of
terciles of (a) T and (b) P valid DJF 2005–06, made with a lead
time of about 1⁄2 month. Shaded, contoured areas are the total
probability of the indicated category: B stands for below normal,
N for normal or median, and A for above normal. EC denotes
equal chances (331⁄3%) for each of the three possible categories.
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with partners, including NWS field and regional head-
quarters personnel. The preparation methods, format,
and verification of the 1- and 3-month outlooks are
nearly identical. Using the input from this discussion,
and the set of forecast tools listed in Table 1, the fore-
caster drafts a set of outlook three-class probability
maps. The maps showing the shift in the center of the
distribution and the POE graphs discussed in the pre-
vious section are created from the three-class maps via
automated processes.

a. The 1-month outlook

CPC’s 1-month outlook, valid for a given future cal-
endar month, is prepared twice each month. The first
issuance is made at about a 2-week lead, on the third
Thursday of the month at the same time as the 3-month
outlook. The second issuance is made on the last day of
the month at a lead of zero. This two-phase set of out-
looks for the same target month is intended to meet the
requirements of users who have expressed a desire for
either 2-week-lead or zero-lead outlooks. The format of
the maps and graphics for this outlook is identical to
that of the 3-month outlook (see section 3). The out-
look is prepared by a single forecaster using tools ap-
propriate to the lead time (Table 3).

We may contrast the 1-month outlooks made at a

2-week lead, which depend solely on relatively weak
climate signals, with those made at zero lead, whose
monthly skill can often be boosted significantly by rela-
tively high-skill forecasts of weather events early in the
target month, especially precipitation. A sample com-
plete set of these outlooks for the forecasts valid for
December 2005 is shown in Fig. 4. The differences in
the temperature outlooks between the 1⁄2-month and
zero-lead versions owe, in part, to the availability to the
forecaster of an operational week-2 forecast and other
short-range forecasts valid for the early part of the tar-
get month.

Zero-lead 1-month outlooks were implemented in
August 2004. Their (non-EC) average Heidke skill
(percent improvement over climatology) over that pe-
riod is 35.9 for temperature and 15.7 for precipitation,
compared with 30.6 and 7.7 for the 1⁄2-month-lead
1-month outlook. The remainder of the paper will focus
on the 3-month outlooks.

b. The 3-month outlook

The 3-month outlook preparation process begins
with comprehensive analyses of the state of the global
oceans and atmosphere (Fig. 5). These analyses are
used to initialize or drive a series of dynamical and
statistical models of the oceans and atmosphere. The

FIG. 2. Anomaly of the midvalue of the 3-month T outlook distribution (solid, shaded
contours, and labels) for DJF 2005/06. Dashed contours are the climatological 3-month mean
T (°F).
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analyses and forecast tools are placed on a public Web
page (http://www.cpc.ncep.noaa.gov/products/
predictions/90day/tools/briefing). The forecaster who is
to prepare the outlook conducts a telephone confer-
ence call, as described earlier, to discuss with our part-
ners in the climate community the current status of the
climate system and the content of the available forecast
tools. Based on the results of these discussions, and his
or her own interpretation of the forecast tools, the fore-
caster drafts the three-class outlook maps for each of
the variables and leads.

The forecaster hosts another telephone conference
call on the Tuesday following the first briefing to dis-
cuss the draft forecasts with a group of partners within
the government. Since the forecast is embargoed from
public release until the upcoming Thursday, the partici-
pants in this second conference call must agree to main-
tain the confidentiality of the information (all partici-
pants in this process are prohibited, by law, from using
this information for their own, or others’, financial
gain).

The forecaster finalizes the draft outlook maps,
based upon input received during the second briefing,
and composes a bulletin giving a brief synopsis of the
status of the climate system, the rationale behind the
forecaster’s choices, and an overview of the outlook
maps. The 3-month outlook production process culmi-
nates with the dissemination of a set of 26 three-month
forecast maps (13 each for temperature and precipita-
tion) along with a text bulletin on Thursday (the third
Thursday of the month). We will now discuss the
3-month outlook process in the context of the actual
forecast for DJF 2005–06, which was disseminated on
17 November 2005.

Among the first steps in the seasonal forecast process
is to assess the current and expected future status of the
sea surface temperatures in the tropical Pacific. Figure
6 shows the official SST forecast issued 11 November
2005, along with forecasts from the tools used to pro-
duce an objective consolidation, indicated by the box-
and-whiskers plots. This is the forecast available opera-
tionally for preparing the 3-month outlook for DJF

FIG. 3. Survival curves for 1971–2000 observed (yellow curve), a normal distribution fit to the observed (black),
and the 3-month temperature outlook distributions (heavy red curve) of T for a climate division near northern MN
for DJF 2005–2006. The graphs give the probability ( y axis) that the values on the x axis will be exceeded.
Horizontal lines indicate the relationship between paired values of temperature and the climatological probability
(heavy black curve). The heavy red curve shows the change in the climatology indicated by the outlook for this
region. The light red lines straddling the outlook give the likely error associated with the forecast. Annotations in
the upper half of the diagram refer to statistical properties of the observed and forecast distributions. Red numbers
near the bottom show the observed seasonal mean T for the last 10 yr, while the asterisk shows the mean of these
10 T values.
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2005–06. The forecast (Fig. 6) indicated that SSTs in the
Niño-3.4 region (Niño-3.4 is the box defined by 5°N–
5°S, 120°–170°W) were likely to be above average dur-
ing winter 2005–06. When the 3-month running mean of
this temperature anomaly is above (below) 0.5°C for
five consecutive months, the event is officially classified
as an El Niño (La Niña). The version of this 3-month
running mean in the Niño-3.4 region based upon ver-
sion 2 of the Extended Reconstructed SST (ERSSTv.2;
Smith and Reynolds 2005) dataset is called the oceanic
Niño index (ONI; Kousky and Higgins 2007). CPC pays
special attention to the status and future evolution of
such events, because the impacts of both El Niño and its
cold-SST counterpart, La Niña, have large and long-
lasting impacts (up to a year) over the United States.

The forecaster must next place this information into
the context of the other forecast tools and develop out-
look maps. The four primary tools used in the DJF
2005–06 three-month temperature outlook (Figs. 7a–d)
alternatively complement or contradict one another,
and have widely varying magnitudes and a priori skill
levels. Before the consolidation tool was implemented
in early 2006, a forecaster was forced to combine all of
this information subjectively, often in a less than opti-
mal way, which was conducive to error and impossible

to reproduce after the fact. Figure 7e shows the results
of the objective consolidation of these four tools. As we
will demonstrate later, armed with this starting point,
the forecaster stands a much better chance of producing
an outlook that better reflects the available informa-
tion.

Seasonal total precipitation has at least several times
more degrees of freedom, on average, than seasonal
mean 2-m temperature (Richman and Lamb 1985;
Livezey and Barnston 1988), and is a discontinuous
field. These qualities make 3-month precipitation much
more difficult to predict than temperature. Conse-
quently, precipitation forecast tools (Figs. 8a–d) have
much lower average skill and much lower area coverage
than do those for temperature (Figs. 7a–d).

Uncertainty about the behavior of the tropical Pacific
Ocean made the DJF 2005–06 outlook difficult. The
text bulletin that accompanied the official forecasts for
DJF 2005–06, made 17 November 2005 (not shown),
indicates that, in spite of the observed existence of
colder than normal sea surface and subsurface ocean
temperatures in the eastern tropical Pacific, neutral
ENSO conditions were considered to be likely to per-
sist until early 2006.

5. Skill of LRF

A record of the skill of the forecast tools over a suf-
ficiently long historical period is needed in order to
properly weight the tools’ contributions to operational
forecasts. This, in turn, affects the magnitude of the
forecast probabilities. CPC requires that any forecast
tool must be accompanied by at least a 25-yr record of
the forecast skill, in order to be used in the objective
consolidation technique used in the forecast process.
CPC also uses skill scores to document the temporal
and spatial variability of skill, and to calibrate the sub-
jective probabilities placed on the outlook maps. Fi-
nally, skill information can be used by those applying
CPC outlooks to risk assessment (Livezey 1990).

The U.S. average Heidke skill score, which is the
percent improvement of the forecast over climatology,
or random forecasts, of 1⁄2-month-lead 3-month mean
temperature outlooks from 1995 to 2005, is shown in
Fig. 9. The dashed curve in the top graph (Fig. 9a),
marked by “O” symbols, shows the U.S. average skill
score for official outlooks (OFF), not including the EC
regions on the map s � [(c � e)/(t � e)]100, where c is
the number of grid points correct, e is the number of
grid points expected correct by chance given the 30-yr
climatology in effect when the forecast was issued, and
t is the total number of grid points where non-EC prob-

TABLE 2. Possible below, normal, and above combinations on 1-
and 3-month outlook probability maps.

No.
Probability
of B (%)

Probability
of N (%)

Probability
of A (%)

1 90 6.67 3.33
2 80 16.67 3.33
3 70 26.67 3.33
4 60 33.33 6.67
5 50 33.33 16.67
6 40 33.33 26.67
7 33.33 33.33 33.33
8 30 40 30
9 25 50 25

10 20 60 20
11 15 70 15
12 10 80 10
13 5 90 5
14 10 80 10
15 15 70 15
16 20 60 20
17 25 50 25
18 30 40 30
19 33.33 33.33 33.33
20 26.67 33.33 40
21 16.67 33.33 50
22 6.67 33.33 60
23 3.33 26.67 70
24 3.33 16.67 80
25 3.33 6.67 90
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abilities were assigned. Henceforth, these scores will be
referred to as NOEC scores. Thick curves in Fig. 9a,
marked by an X, show the NOEC scores for the con-
solidation forecasts (CON). There is considerable vari-
ability in this score (Fig. 9a). The highest scores occur in
association with ENSO events. The level dashed
and thick lines indicate that the 1995–2005 aver-
age NOEC skill is in the low 20s for NOEC official
forecasts and in the upper 20s for NOEC consolidation
forecasts.

The skill for all grid points on the forecast map (com-
bined non-EC and EC forecasts) is shown in bottom
graph (Fig. 9b). The equation for this “all points,” or

“ALL” skill score (sometimes referred to as the modi-
fied Heidke skill score) is s � {[(c � e � (1/3)ec]/(t �
e)}100, where c and e are as defined earlier, ec is the
number of grid points predicted with “equal chances”
(indicated by EC on the forecast maps in Fig. 1), and t
is the total number of all of the grid points on the map.
The ALL skill score (Fig. 9b) is more conservative than
NOEC, weighting areas covered by probabilities
greater than 33.3, as well as EC forecast regions. Suc-
cessful forecasts with small non-EC probability regions
and large EC regions necessarily have much lower
(ALL) scores (Fig. 9b) in comparison with NOEC skill
scores for the same forecasts (Fig. 9a).

FIG. 4. (left) One-month temperature and (right) precipitation outlooks, at leads of (top) 1⁄2
month and (bottom) zero, valid for December 2005. The meaning of the contours and shading
is the same as in Fig. 1.

TABLE 3. Tools and considerations in the 1⁄2-month- and zero-lead 1-month outlooks.

1/2-month-lead 1-month outlook Zero-lead 1-month outlook

Tools OCN, CCA, SMLR, and CFS OCN, CCA, SMLR, CFS, daily official forecasts for days
1–7, and CPC 6–10- and 8–14-day average outlooks

Factors considered Climate signals, including ENSO, drought, SST
near coasts, snow cover, and soil moisture

Climate signals, weather during the first 2 weeks of the
forecast period
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During 1995–2005, the NOEC (ALL) skill scores in-
dicate that CON temperature forecasts improve upon
official forecasts by 18% (78%) (Figs. 9a and 9b). The
improvement in the precipitation outlooks by CON

over OFF is much larger, from a score of 4.1 (OFF) to
12.1 (CON) for NOEC forecasts, and from 1.0 (OFF) to
3.0 for ALL forecasts (Figs. 10a and 10b).

One reason for the improvement made by the CON

FIG. 6. Official SST outlook for the Niño-3.4 region, issued 11 Nov 2005. The box-and-
whiskers plots show the official forecast, labeled CON, resulting from objectively combining
constructed analog (CA), CCA, Markov (MKV), and CFS forecast tools. The large dot is the
latest observed 3-month mean T. The top (bottom) of each box corresponds to the 84th (16th)
percentile of the forecast distribution. Whiskers correspond to the 97.5th (2.5th) percentile of
the expected forecast distribution.

FIG. 5. NCEP 3-month outlook operation schematic.
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FIG. 7. (a) OCN tool used for the 1⁄2-month-lead 3-month tem-
perature outlook for DJF 2005/06. Colors of the plus symbols
(blue, green, and red for below, normal, and above, respectively)
indicate the sign of the forecast standardized anomaly at locations
where the hindcast skill [anomaly correlation (AC)] is less than
0.3. Small, medium, and large numbers indicate, respectively,
standardized anomaly values where the hindcast skill is 0.31 � AC
� 0.44, 0.45 � AC � 0.59, and 0.6 � AC. (b) As in (a), but for
canonical correlation analysis (CCA). (c) As in (a), but for screen-
ing multiple linear regression (SMLR). (d) As in (a), but for
NCEP Climate Forecast System (CFS). (e) Consolidation of
OCN, CCA, SMLR, and CFS tools. Shading and contours show
the probability of above (below) expressed as a positive (nega-
tive) fraction.
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FIG. 8. As in Fig. 7, but for precipitation.
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over the official outlooks is that CON skillfully fore-
casts larger areas with greater than 331⁄3% probability
than is done in OFF. Another reason is that CON
weights tools according to their skills in the immediate
past. The skill used to do weighting in CON is estimated
by an exponential moving average that approximates a
running mean of about 30 yr. The weight assigned to

each tool is objectively determined from this skill esti-
mate (UVOC). The CON benefits from an objective
and reproducible weighting procedure, while forecast-
ers must estimate the weights on a case-by-case basis.
For relatively low skill forecasts, any error in this sub-
jective estimate is likely to degrade the resulting fore-
cast. The CON accurately reflects the complementary,

FIG. 9. (a) Percent improvement of the outlook over random (climatology) forecasts
s � [(c � e)/(t � e)]100, where c � the number of points correct, e � the number of points
expected correct by chance, t � the number of points in total for official real-time, operational,
1⁄2-month-lead, 3-month temperature outlooks (dashed curve), and retrospective outlooks
made using CON (thick curve), for the period 1995–late 2005. Horizontal thick and dashed
thin lines show the period averages for both forecast systems. Points used to compute this
score come from regions that were not assigned to the equal chances (EC) category. (b) As in
(a) but for all regions and using the form of the score s � {[c � e � (1/3)ec]/(t � e)}100, where
ec � the number of points predicted to be EC.
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redundant, or conflicting contributions to the forecast
from multiple tools and consistently makes better use
of the available forecast information over the 10 yr of
real-time official and hindcast outlooks (1995–2005).

The consolidation provides a mechanism to constrain
the subjectivity that formerly characterized CPC’s sea-
sonal outlook process. It also serves as a rational basis
for accurately combining outlooks from a number of
forecast tools. Since we have only been using the tech-
nique in operations for a year, it remains to be seen
whether or not human forecasters can consistently im-
prove upon this technique. But, the success we have
seen so far is encouraging. We anticipate that the trend
toward more objective methods of making outlooks at
CPC will continue.

Another comparison of the NOEC skill of OFF and
CON over 1995–2005 is shown in (Fig. 11). The graph
shows considerable scatter about the regression line,
but the slope indicates that there is a relationship be-
tween the skill of the two forecasts. The average (OFF,
CON) point, indicated by the X on the graph, is at (22,
26), indicating that, on average over 1995–2005, CON
improved upon OFF by about 18%. Because the slope
of the regression line is less than 1, it intersects the
dashed line bisecting the graph at the point where the
skill of OFF equals the skill of CON (a score of about
32). To the left of that point along the regression line,
the CON scores better than does OFF, while to the
right of that point, the OFF scores better than CON.
This property is implied in Fig. 9, by the fact that the

FIG. 10. As in Fig. 9, but for P.
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OFF skill curve tends to be outside of CON for both the
highest and lowest scoring forecasts. The fact that the
slope of the regression line in Fig. 11 is less than 1
indicates that the official outlook has higher (lower)
skill than the consolidation in high- (low-) scoring situ-
ations, such as ENSO (non-ENSO) events. This could
be evidence, in part, of value added to official forecasts
by forecasters during ENSO events when skill is gen-
erally high and, alternatively, of the real difficulty fore-
casters have in making subjective outlooks from tools
characterized by subtle differences and very low ex-
pected skill.

The NOEC skill score (Figs. 9a, 10a, and 11) is non–
area weighted. Thus, one can make forecasts at as few
as one station and still get a very high score (the only
scores possible in that case are �100 for a correct one-
station forecast, 0 for an EC forecast, or �50 for an
incorrect one-station forecast). The area-weighted,
ALL skill score (Figs. 9b, 10b, and 11) is much more
conservative, since it almost always incorporates grid
points at which EC forecasts were made, damping the

resulting score toward zero. Thus, a forecast with a high
ALL skill score is potentially of much more value than
one with a high NOEC score, since it represents the
skill over the entire map, and it motivates using tools,
such as the CON, which tend to forecast larger areas
with greater-than-climatological probabilities.

The skill of the CON versus OFF 1⁄2-month-lead
3-month temperature outlooks using the ALL score
(Fig. 12) indicates an even stronger relationship be-
tween the CON and OFF outlooks, less scatter, and a
larger (78%) and more consistent improvement in the
skill of CON in comparison with OFF. The average
point for this graph is at (OFF, CON) � (10.2, 17.2),
and is indicated by an X (Fig. 12). The improvement
made by the CON over the OFF outlooks is amplified
by the fact that CON forecasts cover 20% more area
and have less area covered by equal chance than do the
official outlooks (Fig. 13). This is good news for users of
CPC outlooks, who have often noted that outlooks with
less EC area on the map (along with more skill)
are more useful. Finally, the area-weighted skill

FIG. 11. Comparison of the conterminous U.S. average skill of official CPC 1⁄2-month-lead
3-month T outlooks for non-EC regions with that of outlooks made using an objective con-
solidation of four forecast tools over the 1995–2005 period. The skill score is the percent
improvement of the outlooks over the expected scores of random forecasts. The solid line is
the least squares regression fit. The dashed line divides the graph between outlooks for which
CON is better than OFF, to the left, and OFF is better than CON, to the right. The average
is indicated by an X.
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score rewards forecasts that cover greater areas, while
the non-EC version does just the opposite. These quali-
ties make the area-weighted score a desirable alterna-
tive to the NOEC version, the 48-month running mean
of which is the current official skill metric used by
NOAA for the seasonal outlook. There is virtually no
relationship between area covered and skill between
CON and OFF outlooks during the 1995–2005 period
(Fig. 13).

Scatter diagrams comparing the U.S. average skill of
the OFF and CON 1⁄2-month lead forecasts of precipi-
tation (not shown) have large scatter among the data
points and indicate that the relationship between the
CON and OFF forecasts is nearly nonexistent. How-
ever, because the skill of the precipitation outlooks is so
much lower than that for temperature, the percentage
improvement by the consolidation is that much greater.
The (OFF, CON) average for NOEC forecasts is (4.1,
12.1). Thus, using CON over 1995–2005 produced an
increase in skill for the official 3-month precipitation
outlooks from an average of 4.1 to 12.1. For 1⁄2-month-
lead 3-month precipitation outlooks, the corresponding

ALL graph (not shown) has (OFF, CON) averages of
(1.0, 3.0), a huge improvement, though the skill is quite
low.

Figures 14 and 15 show the geographical distribution
of the Heidke skill score of official non-EC, 1⁄2-month-
lead 3-month temperature and precipitation outlooks
for the 10 yr from 1995 to 2004. Average temperature
skill is consistently high in the Southwest, reaching
maximum values in excess of 70 in all seasons (Figs.
14a–d). That region also has a consistently high per-
centage of non-EC forecasts in all seasons, as indicated
by the color shading. This result is not surprising, since
the statistical forecast tools (OCN, CCA, and SMLR)
have their highest skill there (Barnston 1994b), and
there is a large trend signal there. The South and South-
east fare well in all but the fall (Fig. 14d) when the area
covered by positive skill is lowest and the percentage of
non-EC outlooks is also lowest. Average skill is nega-
tive in the Northeast and the Great Lakes in all seasons.
Since few NOEC forecasts were made there, the score
is based on just a few forecasts and is not a robust
indicator of the actual possible skill. A map of the skill

FIG. 12. Comparison of the conterminous U.S. average skill of official CPC 1⁄2-month-lead
3-month T outlooks for both EC and non-EC regions with that of objective outlooks made
using a consolidation of four forecast tools over the 1995–2005 period. The skill score is the
percent improvement of the outlooks over the expected scores of random forecasts. The solid
line is the least squares regression fit. The dashed line divides the graph between outlooks for
which CON is better than OFF, to the left, and OFF is better than CON, to the right. The
average is indicated by an X.
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of CON forecasts (not shown) indicates that this low-
skill region is where the technique produces the largest
improvement. We are, therefore, optimistic that the
skill scores of official forecasts in these regions will im-
prove through the use of the consolidation.

One-half-month-lead 3-month precipitation outlooks
have much lower U.S. average skill scores and a
much smaller percentage of non-EC forecasts (Fig. 15)
in comparison with the corresponding temperature
outlooks (Fig. 14). However, relatively high winter-
time precipitation skill, and percentage of forecasts
(Fig. 15a), are found in the West, especially the
Northwest and Southwest, and also the southern
United States. These regions of high skill are consistent
with ENSO precipitation patterns. This skill distribu-
tion is also evident in the spring scores (Fig. 15b),
though only over the South. During summer and fall
the skill is best in the West and the South (Figs. 15c and
15d). Skill is positive in the Northeast in both spring
and fall, while in the Great Lakes, it is highest in the
summer.

6. Conclusions

Outlooks of 1- and 3-month average temperature and
total precipitation have been made operationally since
1946 and 1982, respectively. The scientific basis for
these products has changed from one based entirely on
1) skill derived from predictability during the first week
of a zero-lead forecast, 2) persistence, and 3) low-
frequency signals implied by often-weak lagged corre-
lations between antecedent conditions and subsequent
seasonal anomalies, to one based mainly on 1) ENSO;
2) trend; 3) dynamics of low-frequency ocean–
atmosphere variability, as simulated by dynamical mod-
els and facilitated by new observing systems, including
satellites and the Tropical Ocean Global Atmosphere
Tropical Atmosphere–Ocean (TOGA-TAO) array;
and 4) low-frequency signals derived from linear statis-
tical techniques.

Production methods have also changed. Early out-
looks (1946–81) were composed through entirely sub-
jective methods, similar to those used by short-range

FIG. 13. Comparison of the conterminous U.S. percent coverage of official CPC 1⁄2-month-
lead 3-month temperature outlooks for non-EC regions with that of outlooks made using an
objective consolidation of four forecast tools over the 1995–2005 period. The solid line is the
least squares regression fit. The dashed line divides the graph between outlooks for which
CON covered more map area than OFF, to the left, and for which OFF covered more map
area than CON, to the right. The average is indicated by an X.
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FIG. 14. Non-EC Heidke skill score (contours: solid, positive; dashed, negative) of 1⁄2-month-
lead 3-month official temperature outlooks for (a) winter (DJF), (b) spring (MAM), (c)
summer (JJA), and (d) autumn (SON) for outlooks valid during JFM 1995–DJF 2004. Shading
gives the percent of all outlooks that were non-EC. Regions with less than 5% of outlooks are
white.

FIG. 15. Non-EC Heidke skill score (contours: solid, positive; dashed, negative) of 1⁄2-month-
lead 3-month official precipitation outlooks for (a) winter (DJF), (b) spring (MAM), (c)
summer (JJA), and (d) autumn (SON) for outlooks valid during JFM 1995–DJF 2004. Shading
gives the percent of all outlooks that were non-EC. Regions with less than 5% of outlooks are
white.
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forecasters of the day. Modern methods include the use
of long histories of outlooks and verifications from
prior years (reforecasting) to allow bias removal, and
display of forecast information only where and when an
acceptable level of skill has been found in the historical
record (skill masks), and the further use of the skill
record to weight the contribution of forecast tools to a
consolidation of those tools. The consolidation tech-
nique was formally introduced into CPC forecast op-
erations in early 2006. Consolidation of forecast tools
raises the skill of retrospective (1995–2005) seasonal,
1⁄2-month-lead temperature outlooks from an average
improvement over climatology of 22% (official) to 26%
(consolidation) and raises precipitation outlooks from
an average improvement upon climatology of 4% (of-
ficial) to 12% (consolidation, non-EC Heidke skill
score).

The format of the outlooks has changed, from strictly
categorical outlook maps in the early days to one of
probabilistic maps, augmented by maps and graphs,
based upon the probability of exceedance, which give
highly detailed information about the implications of
the outlook for the full probability distribution.

Finally, CPC’s 1- and 3-month outlook probability
maps are being placed onto the National Digital Fore-
cast Database (NDFD). This will allow users to down-
load gridded (in General Regularly-distributed Infor-
mation in Binary format, second edition; GRIB2)
datasets with 5 km � 5 km resolution in a variety of
formats, including Extensible Markup Language
(XML), Hypertext Markup Language (HTML), and
Geographic Markup Language (GML). This capability
will give users unprecedented access to the outlooks
and immensely increase users’ ability to create their
own graphical renderings of the outlooks.

With these important pieces in place, NWS opera-
tional LRFs are making increasingly better use of ob-
served and forecast information, combined through
more objective methods, and are increasingly acces-
sible, in more forms, to users. Future increases in skill
are more likely to come from, and be more clearly re-
lated to, improvements in the forecast tools and to our
increasing understanding of the physics of low-
frequency variability as incorporated into the tools.
These developments make CPC’s LRFs more science
based, objective, independently reproducible, and ac-
cessible. All of these qualities increase the real value of
these outlooks to current and potential users of the
product, whom we are increasingly engaging in a dia-
logue that informs both sides about how the outlooks
can and cannot be used, what our mutual needs are, and
how we can meet those needs as a community.

APPENDIX

Anomaly Correlation

The anomaly correlation (AC) is a measure of simi-
larity between forecast and observed maps:

AC �

�
i�1

n

�fi��ai��n

��
i�1

n

�fi�
2�n �

i�1

n

�ai�
2�n

,

where Fi is the forecast, Ai is the analysis (observation),
Ci is the climate, fi � Fi � Ci, ai � Ai � Ci, and n is the
number of points.
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CORRIGENDUM

EDWARD A. O’LENIC, DAVID A. UNGER, MICHAEL S. HALPERT, AND KENNETH S. PELMAN

National Oceanic and Atmospheric Administration/National Weather Service/Climate Prediction Center, Camp Springs, Maryland

In O’Lenic et al. (2008) we underestimated the skill of both the official (OFF) and the
consolidation (CON) precipitation forecasts for 1995–2005. The actual average skill of
the OFF and CON forecasts over the period was 8.8 and 12.0, respectively. This means
that the improvement by the CON was 36%, instead of 195%. Figure 10a was also in
error. A corrected Fig. 10a is shown.
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